High safety factor for action potential conduction along axons but not dendrites of cultured hippocampal and cortical neurons.

نویسندگان

  • P J Mackenzie
  • T H Murphy
چکیده

By using a combination of Ca2+ imaging and current-clamp recording, we previously reported that action potential (AP) conduction is reliably observed from the soma to axonal terminals in cultured cortical neurons. To extend these studies, we evaluated Ca2+ influx evoked by Na+ APs as a marker of AP conduction under conditions that are expected to lower the conduction safety factor to explore mechanisms of axonal and dendritic excitability. As expected, reducing the extracellular Na+ concentration from 150 to approximately 60 mM decreased the amplitude of APs recorded in the soma but surprisingly did not influence axonal conduction, as monitored by measuring Ca2+ transients. Furthermore, reliable axonal conduction was observed in dilute (20 nM) tetrodotoxin (TTX), despite a similar reduction in AP amplitude. In contrast, the Ca2+ transient measured along dendrites was markedly reduced in low Na+, although still mediated by TTX-sensitive Na+ channels. Dendritic action-potential evoked Ca2+ transients were also markedly reduced in 20 nM TTX. These data provide further evidence that strongly excitable axons are functionally compartmentalized from weakly excitable dendrites. We conclude that modulation of Na+ currents or membrane potential by neurotransmitters or repetitive firing is more likely to influence neuronal firing before AP generation than the propagation of signals to axonal terminals. In contrast, the relatively low safety factor for back-propagating APs in dendrites would suggest a stronger effect of Na+ current modulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

The Histological Evidences for Developmental Alternations in the Transmitting Time of Impulses along the Thalamocortical Tract

Change in transmitting time of impulses along axons is traditionally attributed to two parameters: the myelin formation and the diameter of neurite, both rising during the postnatal development. In the previous study, we showed that conduction velocity of the fibers projecting from the thalamus to the layer IV of the somatosensory (barrel) cortex increases as a function of age. However, the con...

متن کامل

Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development.

Hippocampal neurons in culture develop extensive axonal and dendritic arbors and form numerous synapses. Presynaptic specializations occur at sites of contact between axons and somata or dendrites but they do not appear until day 3 in culture, even though numerous contacts between cells develop within the first 24 hr (Fletcher et al., 1991). To determine whether this delay in the appearance of ...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 4  شماره 

صفحات  -

تاریخ انتشار 1998